

Air-Ground Integration Experiment (AGIE)

FAA William J. Hughes Technical Center
NASA Ames Research Center
Volpe National Transportation Systems Center

Randy Sollenberger, FAA ACT-530 Paddy Cashion, SJSU/NASA Ames Research Center

Research Team & Sponsors

Inter-Agency Working Group

- FAA WJH Technical Center, ACT-530/540
- NASA Ames Research Center
- Volpe National Transportation Systems Center

Sponsors

- FAA (AAR-100, ASD-130, ATP-400)
- NASA Ames Research Center (Advanced Air Transportation Technologies Program)

Project Goals

- Identify operational issues that affect sharedseparation operations
- Provide recommendations for information requirements and procedures
- Evaluate controller and pilot workload and situational awareness

General Approach

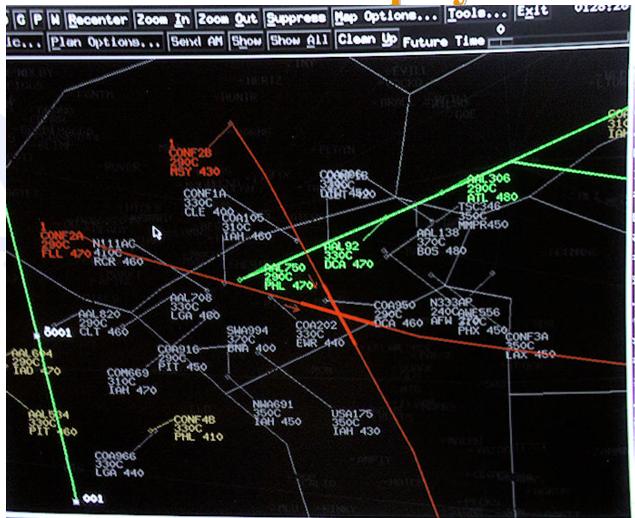
- Real-Time Human-in-the-Loop Simulation
- FAA WJH Technical Center
 - Interoperability and Integration Facility (I²F)
 - Display System Replacement (DSR) Workstations
 - User Request Evaluation Tool (URET)
- NASA Ames Research Center
 - Crew Vehicle System Research Facility (CVSRF)
 - Boeing 747-400 Simulator
 - Cockpit Display of Traffic Information (CDTI) with Airborne Alerting Logic (AL)

Methods

- Participants 4 Weeks of Simulation
 - 2 Controller Teams (R-Side/D-Side) each week
 - 12 Memphis ARTCC FPLs
 - 4 Memphis ARTCC Supervisors
 - 1 Flight Crew (Pilot/Co-Pilot) each week
- Airspace Memphis ARTCC
 - High-Altitude Sectors 21 and 44
- Experimental Design
 - 4 Different Control Conditions (Scenarios)
 - Each Scenario 90-Minutes in Duration
 - B747-400 simulator completed 3 flights per scenario

Experimental Conditions

- Baseline: URET only
 - ATC Full-Separation Environment
- Locus of Control 1: URET and CDTI/AL
 - ATC Full-Separation Environment
- Locus of Control 2: URET and CDTI/AL
 - Shared-Separation Environment / ATC Informed
- Locus of Control 3: URET and CDTI/AL
 - Shared-Separation Environment / ATC Not Informed



URET Display

Scenarios Characteristics

- Traffic on flight deck CDTI (ADS-B range 120 nm) and a 4100' altitude filter
- Traffic on controller's radar display (DSR with URET)
- Moderate/High traffic density
- Adjoining sectors in Memphis ARTCC to investigate operational issues pertaining to inter-sector coordination

Flight Deck Display - No Alerts

Flight Deck Display - Alert Status

Preliminary Results - Flight Crews

(Based on data from three flight crews)

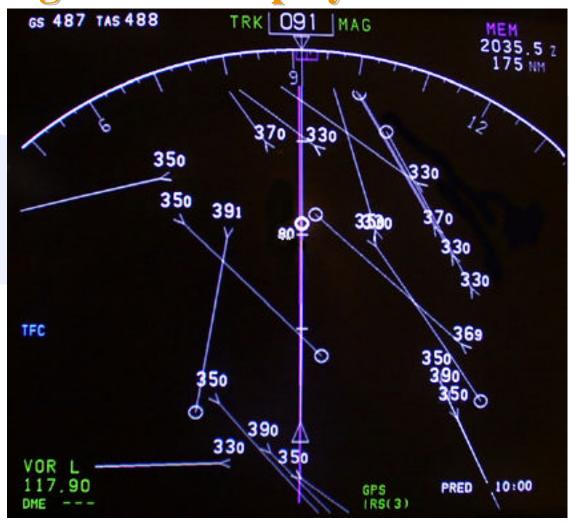
- In Locus 2, controllers canceled free flight 5 out of 9 flight scenarios
 - No flight crew cancellations
- No flight crew separation losses
- Crews seemed to prefer the use of heading maneuvers for resolution of these conflicts
- Based on self-report data, crews stated they monitored the cockpit display 63-68% of the time
- Flight crews felt that the CDTI was cluttered and recommended filtering based on altitude

Preliminary Results - Controllers

- Controllers rated their workload higher in Locus 2 compared to Baseline, Locus 1, and Locus 3
- Controllers rated the level of safety for the procedures as lower in Locus 2 and Locus 3 compared to Baseline and Locus 1
- Controllers were concerned that pilots allowed conflicting aircraft to track closer than controllers normally allow

Summary

- Complex, high fidelity simulation testbed was collaboratively established between FAA and NASA
- Concerns about shared-separation procedures were identified from both air and ground perspective which can guide future development of procedures and equipment
- Lessons learned from AGIE establish foundation for future collaborative research between FAA and NASA



Flight Deck Display - Predictors

Data Collection

- Timing Data
 - Conflict Detection, Communication, and Maneuver Times
- Communications
 - Number, Duration, Type, and with Whom
- Number of Conflict Alerts
- Closest Point of Approach
- Deviation from Path/Cost of Maneuver
- Procedures/Conflict Avoidance Maneuvers

Data Collection (continued)

- SAR, URET, and CDTI Data
- Subject Matter Expert Observations
- Controller Workload Ratings
- Questionnaires and Debriefings
- Audio-Video Recordings

Technical Accomplishments

- High Fidelity Air-Ground Integrated
 Simulation with State-of-the-Art Equipment
 - DSR Workstations with URET Conflict Probe
 - Full Motion Boeing 747-400 Simulator with CDTI/AL Conflict Probe
- Two-way Data Transfer between FAATC and NASA Ames
 - DSR workstations display B747 data from NASA
 - CDTI/AL display other target data from FAATC

Future Research Possibilities

- Mixed Equipage
- Transitioning Airspace
- Addition of Multiple Carriers
 - Negotiations
 - Competition Issues
- Inclusion of Airspace Constraints
 - Weather
 - Special Use Airspace

NASA's Previous Research

- Two studies examined self-separation from flight deck perspective assuming new procedures and technologies
- Third study examined flight crews and ATCS in shared-separation environment
- Ground conflict probe not employed
- Issues studied included traffic density and aircraft convergence angles

Flight Deck Display (CDTI) Features

- Available on the B747-400 Navigation Displays
- Assumes ADS-B range of 120 nm for surveillance
- Airborne alerting logic (velocity vector)
- TCAS II is also available to flight crews

Flight Deck Display (CDTI) Features (continued)

- Altitude and Airspeed displayed for all aircraft within range
- Navigation display range pilot selectable
- Call sign for aircraft pilot selectable

FAA's Previous Research

- Three studies examined controller workload and situational awareness in sharedseparation environment
- Two or three simulation pilots moved all radar targets according to pre-defined scripts
- Aircraft simulators were not employed
- Issues studied included different levels of shared-separation and supporting ground automation

